www.am 8.com

1.概念:编码区非编码区非编码区启动子与RNA聚合酶结合位点终止子原核基因编码区非编码区非编码区启动子与RNA聚合酶结合位点外显子内含子终止子真核基因3、遗传信息、密码子、反密码子区别:遗传信息位于DNA分子的基因上面 密码子位于mRNA上面 反密码子位于tRNA上面考点四基因表达过程

  • 博客访问: 222289
  • 博文数量: 514
  • 用 户 组: 普通用户
  • 注册时间:2019-05-22 02:33:37
  • 认证徽章:
个人简介

曾与徐志摩、闻一多创办新月书社,主编《新月》月刊。

文章分类

全部博文(267)

文章存档

2015年(618)

2014年(335)

2013年(371)

2012年(180)

订阅

分类: 岳塘新闻网

www.am 8.com,1、影响消费水平的因素?2、消费类型的划分?3、其他因素:物价水平、商品因素、消费心理及消费观等2、主要因素:收入水平(当前收入、预期收入、收入差距)1、根本因素国家经济发展水平一、影响消费水平的因素(总结)1、常见4种消费心理;2、4种正确的消费观。材料3:资本主义世界的工业产量下降了三分之一以上,国际贸易总额减少了三分之二。利来国际旗舰版”1、曹操听了摇头。图1是1978年以来我国人口自然增长率变化图,图2是我国未来基于不同生育政策的出生人口规模预测图。

最终我认识到只有不断加强学习,积累充实自我,才能更好的立足本职岗位,高标准的完成好工作。我们的文化工作者,要坚持以人民为中心的创作导向,做到胸中有大义,心里有人民,肩头有责任,笔下有乾坤。利来国际官网他也是老、庄的信徒,从躬耕里领略到自然的恬美和人生的道理。活动预热状态下:划线价格:划线的价格是商品在目前活动预热状态下的销售标价,并非原价,具体的成交价可能因用户使用优惠券等发生变化,最终以订单结算页价格为准。

阅读(769) | 评论(280) | 转发(757) |
给主人留下些什么吧!~~

杉田智和2019-05-22

徐璐璐PAGE考点42恒过定点的直线要点阐述要点阐述含参的直线方程,大都可以改写成的形式,由直线的点斜式方程可知,直线必定过点,利用直线恒过定点可以妙解数学问题.典型例题典型例题【例】若直线l∶y=kx-eq\r(3)与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角α的取值范围是________.【答案】30°<α<90°【易错易混】直线从CA运动到CB,是直线的斜率k>eq\f(\r(3),3),对应的倾斜角为(30°,90°),不包括90°.小试牛刀小试牛刀1.若,直线y+2=k(x–1)恒过一个定点,则这个定点的坐标为()A.(1,–2)B.(–1,2)C.(–2,1)D.(2,1)【答案】A【解析】y+2=k(x–1)是直线的点斜式方程,它经过定点为(1,–2).故选A.【规律方法】解含有参数的直线恒过定点的问题.方法1:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.方法2:分项整理,含参数的并为一项,不含参数的并为一项,整理成等号右边为0的形式,然后含参数的项和不含参数的项分别为零,解此方程组得到的解即为已知直线恒过的定点.2.若,则直线必经过的一个定点是(  )A.(1,1)B.(–1,1)C.(1,–1)D.(–1,–1)【答案】C【解析】由,得,故可化为,所以必经过的一个定点是(1,–1).3.三条直线:,,构成三角形,则的取值范围是(  )A.B.C.D.,【答案】A【秒杀技】若a=1,或a=–1则有两条直线平行,构不成三角形,选出答案A.4.直线y=mx+2m【答案】(-2,1)【解析】把直线方程化为点斜式y-1=m(x+2).显然当x=-2时y=1,即直线恒过定点(-2,1).5.直线的系数,满足,则直线必过定点________.【答案】(6,–8)【解析】∵,∴,∴.∴,∴,解方程组得∴定点为(6,–8).考题速递考题速递1.直线,当变化时,所有直线都通过定点(  )A.(0,0)B.(0,1)C.(3,1)D.(2,1)【答案】C【解析】直线方程整理为k(x–3)–(y–1)=0,过定点(3,1).2.不论怎么变化,直线恒过定点(  )A.(1,2)B.(–1,–2)C.(2,1)D.(–2,–1)【答案】B3.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).4.已知直线l:5ax-5y-a+3=0.(1)求证:不论a为何值,直线l总经过第一象限;(2)为使直线不经过第二象限,求a的取值范围.【解析】(1)将直线l的方程整理为y-eq\f(3,5)=a(x-eq\f(1,5)),∴l的斜率为a,且过定点A(eq\f(1,5),eq\f(3,5)).而点A(eq\f(1,5),eq\f(3,5))在第一象限,故l过第一象限.∴不论a为何值,直线l总经过第一象限.(2)直线OA的斜率为k=eq\f(\f(3,5)-0,\f(1,5)-0)=3.∵l不经过第二象限,∴a≥3.数学文化数学文化蒲丰试验一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了.蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142.蒲丰说:“这个数是π的近似值.每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确.”这就是著名的“蒲丰试验”.

建威参军,仕刘敬宣或刘怀肃。

汪怡序2019-05-22 02:33:37

罗斯福政府干预经济的改革有没有理论支撑?■凯恩斯主义的核心主张是国家应对经济进行干预和调节■凯恩斯主义与罗斯福新政不谋而合!■新政进一步实践和推动了凯恩斯理论;■凯恩斯主义对新政进行了概括和升华。

时云云2019-05-22 02:33:37

全省10个代表团的200多名选手们努力克服生理障碍,全力赴赛,充分展示了精湛的职业技能、不屈的意志和顽强进取、乐观向上的良好精神风貌。, 微积分基本定理学习目标重点难点1.会用定积分求曲边梯形的面积.2.直观了解微积分基本定理的含义.重点:微积分基本定理及利用定理求定积分.难点:利用定积分求较复杂的图形的面积.微积分基本定理对于被积函数f(x),如果F′(x)=f(x),则eq\i\in(a,b,)f(x)dx=__________,亦即____________=F(b)-F(a).预习交流1做一做:eq\i\in(0,1,)x2dx=________.预习交流2做一做:eq\i\in(0,π,)(cosx+1)dx=________.预习交流3议一议:结合下列各图形,判断相应定积分的值的符号:(1)eq\i\in(a,b,)f(x)dx____0(2)eq\i\in(a,b,)g(x)dx____0(3)eq\i\in(a,b,)h(x)dx____0在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引F(b)-F(a) eq\i\in(a,b,)F′(x)dx预习交流1:提示:eq\f(1,3)预习交流2:提示:∵(sinx+x)′=cosx+1,∴eq\i\in(0,π,)(cosx+1)dx=eq\i\in(0,π,)(sinx+x)′dx=sinπ+π-(sin0+0)=π.预习交流3:提示:(1)> (2)< (3)>一、简单定积分的求解计算下列各定积分:(1)eq\i\in(0,2,)xdx;(2)(1-t3)dt;(3)eq\i\in(1,2,)eq\f(1,x)dx;(4)(cosx+ex)dx;(5)eq\i\in(2,4,)t2dx;(6)eq\i\in(1,3,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x2)))dx.思路分析:根据导数与积分的关系,求定积分要先找到一个导数等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函数可结合导数公式表.1.若eq\i\in(0,1,)(2x+k)dx=2,则k=________.2.定积分sin(-x)dx=________.3.求下列定积分的值:(1)eq\i\in(1,2,)eq\r(x)dx;(2)eq\i\in(2,3,)eq\f(1-x,x2).微积分基本定理是求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意y=eq\f(1,x)的原函数是y=.求定积分时要注意积分变量,有时被积函数中含有参数,但它不一定是积分变量.3.定积分的值可以是任意实数.二、分段函数与复合函数定积分的求解计算下列定积分:(1)eq\i\in(2,5,)|x-3|dx;(2)sin2xdx;(3)e2xdx思路分析:被积函数带绝对值号时,应写成分段函数形式,利用定积分性质求解.当被积函数次数较高时,可先进行适当变形、化简,再求解.1.设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,0≤x1,,2-x,1x≤2,))则eq\i\in(0,2,)f(x)dx=__________.2.(1)设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x≤0,,cosx-1,x0,))求f(x)dx;(2)求eq\r(x2)dx(a>0).1.分段函数在区间[a,b]上的积分可化成几段积分之和的形式,分段时按原函数的各区间划分即可.2.当被积函数的原函数是一个复合函数时,要特别注意原函数的求解,与复合函数的求导区分开来.例如:对于被积函数y=sin3x,其原函数应为y=-eq\f(1,3)cos3x,而其导数应为y′=3cos3x.三、由一条曲线和直线所围成平面图形的面积的求解已知抛物线y=4-x2.(1)求该抛物线与x轴所围成图形的面积;(2)求该抛物线与直线x=0,x=3,y=0所围成图形的面积.思路分析:画出图形,结合图形分析定积分的积分区间,同时注意面积与积分的关系.1.抛物线y=x2-x与x轴围成的图形面积为__________.2.曲线y=cosxeq\b\lc\(\rc\)(\a\vs4\al\co1(0≤x≤\f(3π,2)))与坐标轴所围成的面积为________.3.(2012山东高考)设a>0.若曲线y=eq\r(x)与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.利用定积分求曲线所围成的平面图形的面积的步骤:(1)根据题意画出图形;(2)找出范围,定出积分上、下限。 二元一次不等式(组)与平面区域课后篇巩固探究                A组1.若不等式Ax+By+50表示的平面区域不包括点(2,4),且k=A+2B,则k的取值范围是(  )≥-≤-解析由于不等式Ax+By+50表示的平面区域不包括点(2,4),所以2A+4B+5≥0,于是A+2B≥-,即k≥答案A2.图中阴影部分表示的区域对应的二元一次不等式组为(  )++y-解析取原点O(0,0)检验,它满足x+y-1≤0,故异侧点应满足x+y-1≥0,排除B,D.点O的坐标满足x-2y+2≥0,排除C.故选A.答案A3.若点P14,a在0≤,,3解析由题意,知12≤a≤1答案A4.不等式(x+2y-2)(x-y+1)≥0表示的平面区域是(  )解析不等式(x+2y-2)(x-y+1)≥0等价于x+2y答案A5.在平面直角坐标系中,若不等式组x+y-1≥0,x-A.-解析图中的阴影部分即为满足x-1≤0与x+y-1≥0的平面区域,而直线ax-y+1=0恒过点(0,1),故可看作直线绕点(0,1)旋转.当a=-5时,满足题意的平面区域不是一个封闭区域;当a=1时,满足题意的平面区域的面积为1;当a=2时,满足题意的平面区域的面积为;当a=3时,满足题意的平面区域的面积为2.故选D.答案D6.不等式组2x-y解析该不等式组表示的平面区域是一个直角三角形及其内部,其面积等于×3×6=9.答案97.若点(1,2)与点(-3,4)在直线x+y+a=0的两侧,则实数a的取值范围是     .解析由题意,得(1+2+a)(-3+4+a)0,解得-3a-1.故实数a的取值范围是(-3,-1).答案(-3,-1)8.若不等式组x-y≥0,2解析不等式组x-y≥0,2x+y≤2,y≥0表示的平面区域如图中的阴影部分所示,画出直线x+y=0,并将其向右上方平行移动,直至直线过点(1,0),均满足题意,此时0a≤1;将其再向右上方平移,原不等式组所表示的平面区域就不能构成三角形了,直至直线经过点A2答案0a≤1或a≥9.画出以A(3,-1),B(-1,1),C(1,3)为顶点的△ABC的区域(包括边界),并写出该区域所表示的二元一次不等式组.解如图所示,直线AB,BC,CA所围成的区域就是所要画的△ABC的区域,其中直线AB,BC,CA的方程分别为x+2y-1=0,x-y+2=0,2x+y-5=0.在△ABC内取一点P(1,1),将其代入x+2y-1,得1+2×1-1=2代入x-y+2,得1-1+2代入2x+y-5,得2×1+1-50.又所画区域包括边界,所以该区域所表示的二元一次不等式组为10.导学号04994072在平面直角坐标系中,求不等式组y≥x-解原不等式组可化为y上述不等式组表示的平面区域如图阴影部分所示,则△ABC的面积即为所求.易知点B的坐标为12,-12,点C的坐标为(所以S△ABC=S△ADC+S△ADB=×2×1+×2×12B组1.不等式(x-2y+1)(x+y-3)≤0在直角坐标平面内表示的区域(阴影部分)是下列图形中的(  )解析∵(x-2y+1)(x+y-3)≤0,∴x-2答案C2.二元一次不等式组解析不等式组表示的平面区域如图中阴影部分所示,易知图中阴影部分有4个整点,分别是(0,0),(0,-1),(1,-1),(2,-2),故选B.答案B3.若不等式组x-y+5≥0,yA.(-∞,5)B.[7,+∞)C.[5,7)D.(-∞,5)∪[7,+∞)解析作出不等式组x-y+5≥0,0≤x答案A4.如图,四条直线x+y-2=0,x-y-1=0,x+2y+2=0,3x-y+3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组       表示.解析点(0,0)在该平面区域内,点(0,0)和平面区域在直线x+y-2=0的同侧,把(0,0)代入x+y-2,得0+0-20,所以对应的不等式为x+y-20.同理可得其他三个相应的不等式为x+2y+20,3x-y+30,x-y-10.故所求不等式组为3答案35.若直线y=kx+1将不等式组x-y+2≥0,x解析不等式组表示的平面区域如图中阴影部分所示,△ABC是等腰直角三角形,且BC⊥x轴,A(-1,1).直线y=kx+1经过点(0,1),要使直线将△ABC的面积等分,则k=0.答案06.画出不等式|x|+|y|≤1。

沈秀梅2019-05-22 02:33:37

PAGE3.课后篇巩固探究                A组1.已知某线性规划问题中的目标函数为z=3x-y,若将其看成直线方程,则z的几何意义是(  )A.该直线的截距B.该直线的纵截距C.该直线的纵截距的相反数D.该直线的横截距解析由z=3x-y,得y=3x-z,在该方程中-z表示直线的纵截距,因此z表示该直线的纵截距的相反数.答案C2.目标函数z=x-y在2x-yA.(0,1)B.(-1,-1)C.(1,0)解析可以验证这四个点均是可行解,当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=,y=时,z=0.排除选项A,B,D,故选C.答案C3.若变量x,y满足约束条件x+y≤3,x-y≥-有最大值无最小值有最小值无最大值的最小值是的最大值是10解析由z=4x+2y,得y=-2x+.作出不等式组对应的平面区域,如图阴影部分所示.平移直线y=-2x,当直线y=-2x+经过点B(0,1)时,直线y=-2x+在y轴上的截距最小,此时z最小,且zmin=2.当直线y=-2x+经过点C(2,1)时,直线y=-2x+在y轴上的截距最大,此时z最大,且zmax=4×2+2×1=10.故选D.答案D4.若直线y=2x上存在点(x,y)满足约束条件x+y-3≤0,A.-解析满足约束条件的平面区域如图中的阴影部分所示,由y=2x,x+y-3=0得交点P(1,2).答案B5.已知实数x,y满足约束条件x-y+4≥0,x+y解析因为z=2x+y,所以y=-2x+z.不等式组满足的平面区域如图阴影部分所示.平移直线2x+y=0,由图形可求得z=2x+y的最小值是-2.答案-26.已知变量x,y满足2x-y≤0,解析作出可行域,如图阴影部分所示.由图知,目标函数z=x+y-2在点A处取得最大值.易知A(1,2),故zmax=1+2-2=1.答案17.铁矿石A和B的含铁率a、冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:ab/万吨c/百万元A50%13B70%某冶炼厂至少要生产万吨的铁,若要求CO2的排放量不超过2万吨,则购买铁矿石的最少费用为     百万元.解析设需购买铁矿石Ax万吨,铁矿石By万吨,购买费用为z,则根据题意得到的约束条件为x≥0,y≥0,+≥,x+≤2,目标函数为z=3x+答案158.导学号04994076已知S为平面上以A(3,-1),B(-1,1),C(1,3)为顶点的三角形区域(含三角形内部及边界).若点(x,y)在区域S上移动.(1)求z=3x-2y的最值;(2)求z=y-x的最大值,并指出其最优解.解(1)z=3x-2y可化为y=x-z2=32x+b,故求z的最大值、最小值,相当于求直线y=x+b在y轴上的截距b的最小值、最大值,即b①如图①,平移直线y=x,当y=x+b经过点B时,bmax=,此时zmin=-2b=-5;当y=x+b经过点A时,bmin=-112,此时zmax=-2b=11.故z=3x-2y的最大值为11,最小值为-5(2)z=y-x可化为y=x+z,故求z的最大值,相当于求直线y=x+z在y轴上的截距z的最大值.如图②,平行移动直线y=x,当直线y=x+z与直线BC重合时,zmax=2,此时线段BC上任一点的坐标都是最优解.②9.甜柚和脐橙是赣州地区的两大水果特产,一农民有山地20亩,根据往年经验,若种脐橙,则每年每亩平均产量为1000千克;若种甜柚,则每年每亩平均产量为1500千克.已知脐橙成本每年每亩4000元,甜柚成本较高,每年每亩12000元,且脐橙每千克卖6元,甜柚每千克卖10元.现该农民有120000元,那么两种水果的种植面积分别为多少,才能获得最大收益解设该农民种x亩脐橙,y亩甜柚时,能获得利润z元.则z=(1000×6-4000)x+(1500×10-12000)y=2000x+3000y,其中x,y满足条件x+y当直线y=-x+z3000经过点B组                1.若变量x,y满足约束条件x+y≤8,2y-x≤4,x≥0,解析画出可行域,如图阴影部分所示.由图可知,当直线y=x5+z5经过点A时,z有最大值;经过点B时,z有最小值.联立方程组x+y对x+y=8,令y=0,则x=8,即B(8,0),所以a=5×4-4=16,b=5×0-8=-8,则a-b=16-(-8,看图讲故事所见看图讲故事图中人是谁?他在什么地方?在干什么?他心里在想什么?你在图上看到什么?所见。(路透社)11月28日,欧盟通过有关黑海事件的声明,但在其中未提及制裁,仅表示欧盟打算密切关注刻赤海峡的局势,并准备充分与国际伙伴协调采取行动。。

德丸完2019-05-22 02:33:37

”李易峰、迪丽热巴获“双奖”引热议颁奖晚会现场揭晓了金鹰奖“观众喜爱的电视剧男女演员”各两位获奖者,年轻演员和中生代演员胜出,结果引发热议。,材料二中李约瑟指出了儒家思想阻碍了科技创新与发展。。领导班子民主生活会记录范例(3)(通报征求群众意见情况,要详细记录)接下来反馈上次民主生活会存在问题的整改情况:………………下面,开展批评与自我批评,要求每一位同志都要发言。。

陈子昂2019-05-22 02:33:37

解决方法在前/后幅纸型增加肋边的宽度,同时增加浪下持出部分。,2017年基层党建述职报告管理系教工党支部汇报人:***;目录;1.党支部情况简介 2.党支部标准化建设情况 3.“两学一做”推进落实情况 4.“三会一课”开展情况;1.党支部情况简介 ;1.党支部情况简介 ;2.党支部标准化建设情况;3.“两学一做”推进落实情况;3.“两学一做”推进落实情况;4.“三会一课”开展情况;目录;存在的主要问题:1.投入精力有限个人思想政治素质离优秀党员干部的标准还有差距,业务能力与水平还需要进一步提高。。1、县委县政府出台了以下几个《**县2014年人口和计划生育工作实施办法》、《**县2014年人口和计划生育实施方案》、《**县2014年计划生育目标管理责任制》等。。

评论热议
请登录后评论。

登录 注册

w66利来国际 利来娱乐账户 利来国际w66.com 利来国际娱乐官方 利来国际老牌w66
www.w66.com 利来电游官方网站 利来国际网址 利来国际w66利来国际w66 利来国际真人娱乐
www.w66.com 利来国际www.w66com 利来国际最老牌 利来国际老牌软件 利来娱乐国际最给利老牌网站是什么
利来国际旗舰厅app 利来国际娱乐官方 w66利来国际 w66利来guoji 利来国际官网
霍山县| 饶阳县| 共和县| 定兴县| 女性| 杭州市| 广宁县| 依兰县| 巴青县| 商丘市| 博湖县| 西安市| 承德市| 淮滨县| 陇西县| 萨嘎县| 惠来县| 长寿区| 即墨市| 大姚县| 越西县| 安西县| 航空| 山阴县| 蒙自县| 凤阳县| 北海市| 本溪| 清原| 博白县| 定陶县| 临沭县| 慈溪市| 若尔盖县| 昭平县| 瑞昌市| 天柱县| 河间市| 台湾省| 北京市| 襄汾县| http://m.85708878.cn http://m.02403032.cn http://m.77658281.cn http://m.97000876.cn http://m.41332350.cn http://m.26820470.cn